US 2009/0160816 Al

chords 634, in which case decision diamond 632 will find
they have no associated input events. If the chord does have
tap input events, step 636 appends these to the main outgoing
event queue of the host communication interface 20. Finally
step 624 clears the synchronization marker in readiness for
future finger synchronizations on the given hand.

[0259] As a further precaution against accidental genera-
tion of chord taps while typing, it is also useful for decision
diamond 632 to ignore through step 634 the first chord tap
which comes soon after a valid keypress without a chord slide
in between. Usually after typing the user will need to reposi-
tion the mouse cursor before clicking, requiring an interven-
ing chord slide. If the mouse cursor happens to already be in
place after typing, the user may have to tap the finger chord a
second time for the click to be sent, but this is less risky than
having an accidental chord tap cause an unintended mouse
button click in the middle of a typing session.

[0260] FIG. 40A shows the detailed steps of the chord
motion recognizer module 18. The chord motion recognition
process described below is repeated for each hand indepen-
dently. Step 650 retrieves the parameters of the hand’s iden-
tified paths 250 and the hand’s extracted motion components
from the motion extraction module 16. If a slide of a finger
chord has not already started, decision diamond 652 orders
slide initiation tests 654 and 656. To distinguish slides from
glancing finger taps during typing, decision diamond 654
requires at least two fingers from a hand to be touching the
surface for slide mode to start. There may be some exceptions
to this rule, such as allowing a single finger to resume a
previous slide within a second or so after the previous slide
chord lifts off the surface.

[0261] Ina preferred embodiment, the user can start a slide
and specify its chord in either of two ways. In the first way, the
user starts with the hand floating above the surface, places
some fingers on the surface possibly asynchronously, and
begins moving all of these fingers laterally. Decision diamond
656 initiates the slide mode only when significant motion is
detected in all the touching fingers. Step 658 selects the chord
from the combination of fingers touching when significant
motion is detected, regardless of touchdown synchronization.
In this case coherent initiation of motion in all the touching
fingers is sufficient to distinguish the slide from resting fin-
gers, so synchronization of touchdown is not necessary. Also,
novice users may erroneously try to start a slide by placing
and sliding only one finger on the surface, forgetting that
multiple fingers are necessary. Tolerance of asynchronous
touchdown allows them to seamlessly correct this by subse-
quently placing and sliding the rest of the fingers desired for
the chord. The slide chord will then initiate without forcing
the user to pick up all fingers and start over with synchronized
finger touchdowns.

[0262] In the second way, the user starts with multiple
fingers resting on the surface, lifts a subset of these fingers,
touches a subset back down on the surface synchronously to
select the chord, and begins moving the subset laterally to
initiate the slide. Decision diamond 656 actually initiates the
slide mode when it detects significant motion in all the fingers
of the synchronized subset. Whether the fingers which
remained resting on the surface during this sequence begin to
move does not matter since in this case the selected chord is
determined in step 658 by the combination of fingers in the
synchronized press subset, not from the set of all touching
fingers. This second way has the advantage that the user does
not have to lift the whole hand from the surface before starting

Jun. 25, 2009

the slide, but can instead leave most of the weight of the hands
resting on the surface and only lift and press the two or three
fingers necessary to identify the most common finger chords.
[0263] To provide greater tolerance for accidental shifts in
resting finger positions, decision diamond 656 requires both
that all relevant fingers are moving at significant speed and
that they are moving about the same speed. This is checked
either by thresholding the geometric mean of the finger
speeds or by thresholding the fastest finger’s speed and veri-
fying that the slowest finger’s speed is at least a minimum
fraction of the fastest finger’s speed. Once a chord slide is
initiated, step 660 disables recognition of key or chord taps by
the hand at least until either the touching fingers or the synced
subset lifts off.

[0264] Once the slide initiates, the chord motion recognizer
could simply begin sending raw component velocities paired
with the selected combination of finger identities to the host.
However, in the interest of backward compatibility with the
mouse and key event formats of conventional input devices,
the motion event generation steps in FIG. 40B convert motion
in any of the extracted degrees of freedom into standard
mouse and key command events which depend on the identity
of the selected chord. To support such motion conversion,
step 658 finds a chord activity structure in a lookup table
using a bitfield of the identities of either the touching fingers
or the fingers in the synchronized, subset. Different finger
identity combinations can refer to the same chord activity
structure. In the preferred embodiment, all finger combina-
tions with the same number of non-thumb fingertips refer to
the same chord activity structure, so slide chord activities are
distinguished by whether the thumb is touching and how
many non-thumb fingers are touching. Basing chord action on
the number of fingertips rather than their combination still
provides up to seven chords per hand yet makes chords easier
for the user to memorize and perform. The user has the free-
dom to choose and vary which fingertips are used in chords
requiring only one; two or three fingertips. Given this free-
dom, users naturally tend to pick combinations in which all
touching fingertips are adjacent rather than combinations in
which a finger such as the ring finger is lifted but the sur-
rounding fingers such as the middle and pinky must touch.
One chord typing study found that users can tap these finger
chords in which all pressed fingertips are adjacent twice as
fast as other chords.

[0265] The events in each chord activity structure are orga-
nized into slices. Each slice contains events to be generated in
response to motion in a particular range of speeds and direc-
tions within the extracted degrees of freedom. For example, a
mouse cursor slice could be allocated any translational speed
and direction. However, text cursor manipulation requires
four slices, one for each arrow key, and each arrow’s slice
integrates motion in a narrow direction range of translation.
Each slice can also include motion sensitivity and so-called
cursor acceleration parameters for each degree of freedom.
These will be used to discretize motion into the units such as
arrow key clicks or mouse clicks expected by existing host
computer systems.

[0266] Step 675 of chord motion conversion simply picks
the first slice in the given chord activity structure for process-
ing. Step 676 scales the current values of the extracted veloc-
ity components by the slice’s motion sensitivity and accelera-
tion parameters. Step 677 geometrically projects or clips the
scaled velocity components into the slice’s defined speed and
direction range. For the example mouse cursor slice, this



